摘要
针对传统云检测方法对特殊场景识别效果较差而造成的边缘信息丢失和薄云、碎云误判等问题,提出了一种基于多尺度特征融合与混合注意力的高精度云检测MSHA-DeepLab算法。首先,在原始DeepLabV3+算法的基础上引入注意力模块,提高重要特征权重,增强网络对局部特征的感受能力。其次,使用深度可分离卷积提取不同尺度的语义信息,减少网络参数量。最后,进行逐级上采样和特征融合,减少特征信息丢失。选择多种方法与改进算法对比,使用不同场景、不同波段组合的数据集进行测试。结果表明,改进后算法的精确率达到了86.376 9%,召回率达到了85.895 9%,特异性达到了96.915 6%,交并比达到了82.846 7%,精确度达到了94.600 8%,相比原始算法和其他方法有明显提高。验证了提出算法能在不同条件下实现高精度的云检测。
-
单位瞬态物理国家重点实验室; 南京理工大学