摘要

电池荷电状态(SOC)的准确估计是电池管理系统的关键问题,对电池的可靠性和安全性至关重要。由于多数情况下建立的电池模型精度不够高、电池系统的噪声统计是未知的或不准确的,这都会对锂离子电池系统的SOC估计会产生较大影响。本文采用二阶RC等效模型,可减小电池模型带来的误差;同时结合SageHusa滤波算法与无迹卡尔曼滤波(UKF)算法提出了一种新的SOC估计方法,基于噪声统计估计器的自适应无迹卡尔曼(AUKF)滤波算法,它可以对系统噪声进行实时修正以提高SOC的估算精度。并通过比较AUKF和UKF来验证SOC估计方法的准确性和有效性。实验结果表明,AUKF具有更高的SOC估计精度和自适应能力,在脉冲放电工况和动态工况下的估计精度均能保持在4.68%以内,可以有效地估计电池的SOC值。