摘要
火龙果是近年来引进我国的营养价值高、经济效益好的新型水果,肉质茎枝是其主要光合器官,与常见果树具有较大差异。为探索以茎枝为光合作用器官的植被的光谱特征及其生化组分的估测方法,以火龙果为研究对象,在贵州省典型种植区罗甸县开展了4个氮肥梯度田间试验,同步测定不同养分丰缺程度下的火龙果茎枝高光谱和相应叶绿素含量数据;然后分析火龙果茎枝光谱数据的演化规律,并采用数学变换、连续小波变换算法并结合相关性分析算法处理分析火龙果茎枝光谱数据,提取并筛选特征波段;最后利用偏最小二乘算法构建火龙果茎枝叶绿素含量估测模型。研究结果表明:(1)火龙果肉质茎枝的原始光谱曲线整体趋势与常见绿叶植物相似,但随施氮量的增加,火龙果近红外处的光谱反射率逐渐降低,变化趋势与常见绿叶植物相反,茎枝光谱的吸收峰(谷)随施氮量的增加呈升高(加深)的趋势。(2)数学变换中的一阶微分与在L1—L5尺度内的连续小波变换能有效提升光谱对叶绿素含量的敏感性,火龙果茎枝原始光谱与叶绿素含量的敏感区域主要位于730~1 400 nm,数学变换与连续小波变换均能提升光谱对叶绿素含量的敏感性。与常见绿叶植物相比,火龙果茎枝敏感波段分布相对分散,且多位于730 nm附近与近红外区域(1 100~1 600 nm)。(3)数学变换和连续小波变换能明显提升光谱对火龙果茎枝叶绿素含量的估测能力,其中基于一阶微分的估测模型与基于连续小波变换L1与L4的估测模型分别为数学变换与连续小波变换的最优模型,其验证精度分别为R验证2=0.625, RMSE=0.048, RPD=1.238(一阶微分);R验证2=0.678, RMSE=0.037, RPD=1.652(连续小波变换);表明高光谱技术可以作为火龙果茎枝叶绿素含量和营养诊断的无损监测手段。该研究为完善不同植被类型基于高光谱指数的叶绿素反演提供了补充。
-
单位贵州省农业科学院科技信息研究所; 西南大学; 北华航天工业学院