摘要
将极限学习机(ELM)应用于铁谱磨粒模式识别中,从磨粒彩色图像中提取出磨粒的形状尺寸、颜色、纹理3个方面的特征参数作为ELM的输入,以正常滑动磨粒、严重滑动磨粒、球状磨粒、切削磨粒、氧化物磨粒这5种类型磨粒作为ELM的输出,建立基于ELM的磨粒分类器;将3个方面的17个特征参数进行排列组合建立不同的模型,通过对比实验及分析,确定出最优的模型和磨粒分类器;通过实验比较基于ELM与基于BP神经网络的磨粒分类器性能。结果表明:基于ELM神经网络的磨粒分类器的识别速度平均为150 ms,准确率最高为96%,基于BP神经网络的磨粒分类器的识别速度平均为250 ms,准确率最高为90%。因此,基于ELM的磨粒分类器识别速度更快、准确率更高。
-
单位空军工程大学防空反导学院