摘要

为了能够准确地预测空气质量指数(AQI),建立了基于集合经验模态分解(EEMD)-样本熵(SE)的极限学习机(ELM)和门控循环单元(GRU)组合的AQI预测模型。首先利用EEMD算法对AQI数据进行分解,得到一组不同尺度的本征模态函数分量和残余分量;其次计算各分量SE值,根据各分量SE值将各分量重新组合成新的序列,并将新序列按其复杂程度经过GRU模型或ELM模型进行预测;最后将所有结果叠加得到AQI预测值。实验结果表明,与反向传播(Back Propagation,BP)神经网络模型、长短期记忆网络(Long Short-term Memory,LSTM)模型、ELM模型、GRU模型、EEMD-SE-ELM模型、EEMD-SE-GRU模型和EMD(经验模态分解)-SE-ELM-GRU模型相比,基于EEMD-SE-ELM-GRU的组合预测模型其预测误差最小,预测精度最高。

  • 单位
    电子工程学院

全文