摘要

为了更好地进行风机控制及系统调度,需准确预测风电功率。针对风力发电机工作过程中不能发出非常稳定的功率问题,研究了BP神经网络的原理和算法,提出了一种基于历史数据和NWP数据相结合的组合预测模型,在原始功率数据上添加风速、风向、温度历史数据,通过构建并训练BP神经网络,预测未来10min~4h风电功率。经验证,与只含历史功率数据的BP神经网络预测相比,含历史功率数据和NWP数据的BP神经网络预测精度更高、更有效。

全文