融入空间关系的矩阵分解POI推荐模型

作者:魏海涛; 李柯; 赫晓慧*; 田智慧
来源:武汉大学学报(信息科学版), 2021, 46(05): 681-690.
DOI:10.13203/j.whugis20200355

摘要

兴趣点(point of interest, POI)推荐是在基于位置的社交网络中流行起来的个性化服务。针对数据稀疏和隐性反馈的使用等问题,提出了一种关系型矩阵分解模型——合作竞争矩阵分解(cooperative competition matrix factorization,CC-MF)。该模型根据用户与POI间的相互关系建模,融入空间关系,并将空间关系细分为空间距离关系和空间拓扑关系,挖掘POI之间、POI与用户之间的空间关系,以缓解数据稀疏问题;同时使用加权最小二乘准则构建目标函数,缓解隐性反馈问题。在现实世界签到Foursquare数据集上进行实验,结果显示:(1)CC-MF模型显著提高了推荐结果的准确性;(2)考虑空间拓扑关系的空间距离因素能够进一步提升推荐系统的性能。因此,CC-MF模型具有良好的拓展性和解释性,且缓解了数据稀疏和隐性反馈使用问题。

全文