摘要

在吸收Sage-Husa滤波和无迹卡尔曼滤波优点的基础上,利用随机加权估计算法将传统的定义在线性系统上的Sage-Husa噪声估计器推广到非线性系统中,提出一种非线性Sage-Husa随机加权无迹卡尔曼滤波算法.该算法首先利用Sage滤波的开窗平滑方法求得观测残差向量和新息(预测残差)向量的协方差阵;然后用随机加权自适应因子对观测残差和预测残差进行调节;最后对状态预报向量的协方差矩阵进行自适应随机加权估计,以控制观测残差和预测残差对导航精度的影响.计算结果表明,提出的非线性Sage-Husa随机加权无迹卡尔曼滤波算法,滤波精度明显优于无迹卡尔曼滤波和自适应无迹卡尔曼滤波算法,能够提高组合导航的解算精度.

全文