摘要

针对电力负荷非线性、非平稳性、时序性等特点,提出了一种基于EMD-LN-LSTM的短期电力负荷预测模型。利用经验模态分解(EMD)将经数据预处理之后的原始电力负荷数据分解为有限个内涵模态分量(IMF)和一个残差分量,以降低负荷序列的非平稳性和复杂度。将分解后的各分量分别输入到长短期记忆网络(LSTM)中进行预测,同时利用层标准化(LN)对LSTM进行规范化处理,优化网络模型。对各分量预测值进行重组,求出最终的负荷预测结果。以多伦多真实数据为算例,分别使用EMD-LN-LSTM模型和其他模型进行预测,结果表明:EMD-LN-LSTM模型24 h平均绝对百分比误差相较于RNN模型、LSTM模型分别降低了3.600%、1.864%,而拟合优度均高于RNN模型、LSTM模型,表明该模型能够更好地拟合负荷曲线,具有较高的预测精度。