摘要

针对目前基于近景摄影测量方法构建建筑物立面模型过程中因密集影像匹配(DIM)点云噪声所引起的建筑物立面TIN网格模型畸变问题,本文借鉴机器学习中样本学习的思想,对建筑物立面进行了分类并对DIM点云提出了相应的滤波方法,以达到去除DIM点云噪声和改善其TIN网格模型畸变的目的。其中,针对平面结构立面,采取先对点云样本进行学习计算构建数学立面模型所需参数,再对该立面模型设定阈值并对其点云进行滤波处理的方法;针对曲面结构立面,则结合DIM点云特性先将点云样本分类标记归为立面点与非立面点,再进行样本特征值学习,使用Logistic回归算法迭代计算求解最佳回归系数,从而构建滤波分类器的方法对立面点云进行滤波处理。试验结果表明,本文滤波处理方法能将立面DIM点云噪声有效识别并去除,而且使用该方法处理后所得点云构建的建筑物立面TIN网格模型精细化程度得到有效提高,模型质量得到明显改善。

全文