摘要
针对目前复杂交通环境下还存在多目标检测精度和速度不高等问题,以特征金字塔网络(Feature Pyramid Network, FPN)为基础,提出了一种多层融合多目标检测与识别算法,以提高目标检测精度和网络泛化能力。首先,采用ResNet101的五层架构将空间分辨率上采样2倍构建自上而下的特征图,按照元素相加的方式将上采样图和自下而上的特征图合并,并构建一个融合高层语义信息与低层几何信息的特征层;然后,根据BBox回归存在训练样本不平衡问题,选择Efficient IOU Loss损失函数并结合Focal Loss提出一种改进Focal EIOU Loss;最后,充分考虑复杂交通环境下的实际情况,进行人工标注混合数据集进行训练。该模型在KITTI测试集上的平均检测精度和速度比FPN分别提升了2.4%和5 frame/s,在Cityscale测试集上平均检测精度和速度比FPN提升了1.9%和4 frame/s。
-
单位重庆邮电大学; 重庆工程学院