摘要

神经网络的优化方法一般仅局限于学习算法、输入属性方面。由于神经网络拟合的高维映射存在复杂的内在属性依赖关系,而传统的优化方法却没有对其进行分析研究。以函数依赖理论为基础,提出了属性依赖理论,阐述了属性依赖的有关定义,证明了相关定理;并且与径向基函数(RBF)神经网络结合,提出了基于属性依赖理论的RBF神经网络结构优化方法(ADO-RBF)。最后通过实例证明了该方法在实际应用中的可行性。