面状居民地聚类方法的对比分析

作者:孟妮娜; 冯建华*; 贾钰涵
来源:测绘地理信息, 2023, 48(03): 116-120.
DOI:10.14188/j.2095-6045.2021233

摘要

探索建筑物的空间分布模式信息是建筑物地图综合过程中不可或缺的一部分,以建筑物距离为基础,结合建筑物的大小、形状、方向3种特征因子,将多个聚类算法应用于多边形建筑物的聚类分析,并通过不同的城市街区实地数据集对多个聚类算法进行比较分析。结果表明:k-means算法效率最高,但只能识别近似于球形的群组,对呈线性分布的建筑物模式识别效果较差;具有噪声的基于密度的空间聚类(density-basedspatialclusteringofapplicationswithnoise,DBSCAN)算法可以发现任意形状的集群,其对参数的选择过于敏感,难以从复杂的建筑物群中识别出连贯的群组;具有噪声的基于分层的密度聚类(hierarchical DBSCAN,HDBSCAN)算法可以发现任意形状和密度的群组,但对边界区域的建筑物群识别效果较差;最小生成树(minimum spanning tree,MST)算法能够识别出不同类型的建筑物群模式,但难以确定复杂建筑物群的合理划分阈值。

全文