为了提高卷积神经网络中卷积核对管道漏磁图像的特征学习能力,提出一种基于信息熵相似度约束的卷积核优化方法.建立一种信息熵相似度约束规则,通过判定条件对权值相近或相似度过高的卷积核进行优化.搭建实验平台并建立样本数据库进行实验,该方法可优化其特征提取能力,得到具有区分目标和背景语义信息能力的优化卷积核.结果表明,优化卷积核对目标具有较强的特征提取能力,能提高网络分类准确率和工作效率,实验结果与理论分析具有很好的一致性.