摘要
针对超低速滚动轴承故障诊断困难问题,提出一种自适应噪声的完备集合经验模态分解(CEEMDAN)与深度信念网络(DBN)相结合的超低速滚动轴承故障声发射(AE)诊断方法。通过EEMD和CEEMDAN方法分别对轴承AE信号进行分解,结果表明,CEEMDAN具有较好的分解完备性和抗模态混叠性;将EEMD能量熵和CEEMDAN能量熵分别作为模式识别分类器的特征向量进行故障诊断,后者的识别准确率较高;通过与SVM、BP神经网络方法对比,DBN方法的模式识别效果更好,且表现出较好的稳定性。因此,文章所提方法能够有效的应用于超低速滚动轴承的故障诊断。
- 单位