摘要
在采摘机器人的工作过程中,为了提高采摘机器人的采摘成功率,需要获取水果的位置信息,以确定果实与采摘机器人的相对位置关系.由于采摘作业环境复杂,为提高采摘系统的工作效率,提出一种基于Opencv采用Yolov5算法和双目相机对水果进行目标识别和空间定位的方法.针对小目标识别在Yolov5算法中识别精度的不足,在Yolov5算法网络结构中叠加包含更多低层级信息的浅层特征图,实现小目标检测层进行算法优化,实验结果表明,优化后的识别网络对水果检测的平均精度为92.4%.基于深度学习的优化识别网络在识别小目标方面具有更好的性能,可以有效提高果农采摘系统的工作效率.
-
单位哈尔滨商业大学