摘要
蔬菜是居民生活饮食的重要组成部分,蔬菜价格预测存在着价格波动幅度大、影响因素复杂多样、精度不高等难点。本研究以黄瓜为研究对象,分析了影响黄瓜价格的供给、需求、流通等因素,引入Lasso回归模型对影响因素进行筛选,获得12项关联度较大的因素。在此基础上,构建了一种基于影响因素的Lasso回归方法与BP神经网络相结合的组合模型(L-BPNN),开展黄瓜短期价格预测,并与Lasso回归模型、BP神经网络模型、RBF神经网络模型等回归分析和智能分析方法等进行了对比验证研究。结果表明:使用L-BPNN模型预测黄瓜价格,其平均相对误差最小,仅为0.66%,比Lasso回归模型、BP神经网络模型和RBF神经网络模型分别低64.52%、82.11%和86.2%,具有较高的预测精度。本研究结果实现了黄瓜的短期价格预测,也可推广到其他蔬菜品种,对于保障菜农收入、稳定蔬菜市场价格等具有重要意义。
-
单位北京市农林科学院; 国家农业信息化工程技术研究中心