摘要

目的 针对宁波舟山港区的复杂航道水域与密集物流交通流,研究更加有效的调度方案,达成调度时间和等待时间最小化,即效率最大化。方法 分析宁波舟山港区航道的航行情况,提出交会处复杂航道水域存在的问题,以调度时间和等待时间最小为目标的多目标函数,建立复杂航道水域船舶调度模型。针对大量的船舶AIS数据,构建基于神经网络的航道水域调度模型,对不同类型、不同大小的船舶建立速度变化和船舶预测模型,实现对船舶调度状态的预测。设计以传统粒子群算法为基础的改良版船舶调度算法。结果 算法对模型求解表明,根据不同船长与间距可判别交通流拥挤程度进而对船舶进行调度。通过模型预测到可能产生拥挤,则应当选择小型船只走条帚门航道,大型船只走虾峙门航道,并且尽量避免产生拥堵。结论 使用该模型与算法可以有效地提升船舶调度效率,为复杂航运物流港口调度优化研究提供了一定理论基础。

全文