摘要
随着第二代DNA测序技术的发展,研究人员积累了大量的肠道菌群数据,研究表明肠道菌群与宿主健康状况存在密切联系,因此如何对复杂、高维的肠道菌群数据进行建模分析,是当前生物信息学研究中的重要挑战。人工智能的兴起为处理肠道菌群数据,揭示肠道菌群与宿主表型之间的复杂关系提供了可能。综述了现阶段肠道菌群与宿主表型之间的相关研究,重点介绍了常用的5种机器学习算法(线性回归、支持向量机、K-近邻、随机森林、人工神经网络)的理论原理及在相关研究中的应用,对预测宿主表型的机器学习算法选择提出了建议,并对该领域的未来发展进行了展望,以期为利用机器学习对肠道菌群宿主表型预测提供参考依据。
- 单位