提出一种基于非局部信息的截集式可能性C-均值聚类算法。该算法利用像素间的非局部空间邻域信息,将未被噪声污染的像素代替被噪声污染的像素,构造非局部空间约束项,并将该约束项添加到截集式可能性C-均值聚类算法的目标函数中,以实现图像的分割。对4种不同类型的图像进行分割测试,结果显示,该算法不仅保留了图像中更多的细节信息,而且提高了算法对噪声的鲁棒性和抗噪声能力。