摘要
为了充分利用稀疏表示分类信息和高光谱图像的空间信息,提出结合马尔可夫随机场的加权条件稀疏表示高光谱图像分类算法。该算法对稀疏表示分解后的残差向量建立条件稀疏表示模型,在计算残差向量的类别归属时引入频段方差信息;利用光谱信息散度从信息熵的角度挖掘重构光谱中的类别鉴定信息;在期望最大化算法模型中,将条件稀疏模型与光谱信息散度模型相结合,使算法具备迭代自更新的能力;将马尔可夫随机场引入加权条件稀疏表示算法,在算法时间复杂度不变的情况下,对高光谱图像的空间信息予以提取。仿真结果表明,该算法能够有效地提高分类精度,且在不同试验数据下具备良好的稳定性。
- 单位