摘要

基于卷积神经网络(CNN)的入侵检测方法在实际应用中模型训练时间过长、超参数较多、数据需求量大。为降低计算复杂度,提高入侵检测效率,提出一种基于集成深度森林(EDF)的检测方法。在分析CNN的隐藏层结构和集成学习的Bagging集成策略的基础上构造随机森林(RF)层,对每层中RF输入随机选择的特征进行训练,拼接输出的类向量和特征向量并向下层传递迭代,持续训练直至模型收敛。在NSL-KDD数据集上的实验结果表明,与CNN算法相比,EDF算法在保证分类准确率的同时,其收敛速度可提升50%以上,证明了EDF算法的高效性和可行性。

全文