摘要

支持向量机(SVM)分类在精度、泛化性、高维数据处理等方面都具有较强的优势,在遥感影像分类中也得到了广泛应用。由于遥感影像"同物异谱"和"异物同谱"现象的影响,结合纹理特征提高SVM分类精度已成为遥感应用研究的热点。但不同尺度的纹理特征突出的信息不一,在同一尺度上难以区分的地物在多尺度空间则更容易区分,因此,采用多尺度纹理特征进行SVM分类,并从分类样本和纹理特征的选取两个方面探讨SVM土地覆盖分类的方法。首先,以ALOS影像为例,通过灰度共生矩阵提取不同尺度、不同方向的几种纹理特征;然后在光谱分类结果基础上,借助地类特征曲线,选取有效的多尺度纹理特征,最后进行样本分层分类。样本分层分类是选取首层样本进行分类,再从"漏分和错分"地块中选取新样本加入到首层样本中,得到第二层样本并对整个影像进行分类;用同样的方法选出第三层样本或更高层样本进行分类,直到结果满意为止。结果表明:该方法比仅用光谱特征的SVM分类总精度提高了8.11%,Kappa系数增加了0.11。其中,纹理特征的引入使分类总精度提高了4.13%,且对纹理特征较明显的地类更有效;采用样本分层后的分类总精度进一步提高了3.98%,且各单一地类的精度也都有不同程度的提高。借助地类特征曲线选择合适的纹理特征具有一定的可行性,并且采用样本分层的方法能够提高SVM分类的精度。