针对金融高频数据波动率的估计问题,借鉴小波变换思想,首次利用整体经验模态分解方法实现了高频数据波动率估计.首先,通过模拟数据验证了方法的可行性和有效性;其次,以日内高频数据为研究对象,并将分别利用经验模态分解和整体经验模态分解方法计算所得的波动率与已实现波动率进行了对比.结果表明,自适应分解方法可有效实现高频数据波动率估计,但整体经验模态分解要优于经验模态分解方法.该方法为高频数据波动率的非参数估计提供了新的解决途径,具有重要的推广与应用价值.