摘要

神经架构搜索(neural architecture search, NAS)技术自动寻找神经网络中各层的最佳组合和连接方式,以及各种超参数的最佳分布。该方法从搜索空间生成若干不同的卷积神经网络(CNN),使用混合粒子群优化(hybrid particle swarm optimization, HPSO)算法,将一定数目的神经网络个体视做一个群体,将每个网络个体在评价指标下的表现值视做适应度,在给定的世代数范围内,每个神经网络个体都学习自身的历史最佳适应度个体,和整个群体的最佳适应度个体,迭代改善自身的网络架构。实验结果表明,算法运行中出现的最优网络架构,在图像分类任务的多个基准数据集上,与手工设计的神经网络和以遗传算法为基础的NAS算法相比,在网络参数数量和准确率的平衡上取得了有竞争力的结果。