摘要
为了提升架空线路无人机巡检效率,提高架空线路金具锈蚀缺陷智能检测效率,提出了一种基于深度学习的巡检架空线路销钉缺陷检测方法。由于架空输电线路的金具锈蚀缺陷智能检测存在环境背景大、目标小、拍摄角度和拍摄光线差异大等特点,采用图像预处理算法拓充数据集,将MobileNet替换YOLO的主干特征提取网络来提升算法的泛化能力和鲁棒性,并用实际巡检图像进行实验测试。测试集验证中,当置信度阈值取0.5时,P为0.92、R为0.84、AP为91.34%。结果表明,此方法对架空线路金具锈蚀缺陷有较好的检测效果,可以给设备健康状态评估提供参考。
- 单位