摘要

提出组合多决策准则的稀疏表示分类(Sparse Representation-based Classification,SRC)并在合成孔径雷达(Synthetic Aperture Radar,SAR)目标识别中进行应用。传统SRC通常在全局字典上对测试样本进行重构,分别计算不同训练类别对于测试样本的重构误差,最终根据最小重构误差的原则进行分类决策。然而,由于SAR目标识别问题的复杂性,单一决策准则往往对扩展操作条件的适应性不强,导致整体性能下降。为此,文中基于稀疏表示求解的系数矢量,分别采用最小重构误差原则、最大系数能量原则以及局部最小重构误差原则分别进行分类。最小重构误差准则直接采用传统算法。最大系数能量准则分别计算不同训练类别系数能量,按照能量最大的原则进行判决。局部最小重构误差原则在局部字典上对测试样本进行表征和分析,充分体现SAR图像的视角敏感性。对于三个准则获取的决策变量,通过适当转换统一采用概率分布形式进行表达。最终,基于线性加权融合对三个准则的结果进行分析,判决测试样本所属目标类别。基于MSTAR数据集对方法进行测试,分别验证了提出方法在标准操作条件、俯仰角差异、噪声干扰及目标遮挡等情形的性能。实验结果表明:所提方法通过结合多决策准则能够有效提升SAR目标识别性能。