摘要
现有融合机器学习的服装仿真方法大多在单一精度网格上进行仿真,导致在变形较小的区域内进行不必要的计算。提出一种基于子图卷积神经网络的多精度服装建模方法。采用基于物理模拟的方法进行服装仿真,利用瑞利熵曲率计算服装各区域的平均变形度,依据平均变形度对服装网格阈值进行划分,构建与原始网格相对应的多精度服装网格。结合人体结构化模型,从多精度服装网格中提取基于时空的多精度服装图结构。在此基础上,利用子图卷积神经网络为给定顶点采样邻居节点,通过聚合给定顶点和邻居节点的特征,以更新顶点特征数据。实验结果表明,与TailorNet方法相比,该方法的布料计算效率提升25.3%,不仅保留了从物理模拟中学习的褶皱,而且具有更加真实的模拟效果,并提高了计算效率。
- 单位