摘要
针对传统降水粒子分类算法存在的过度依赖专家经验和模型预设误差问题,本文提出了一种基于离散属性贝叶斯网络(Bayesian NeTwork, BNT)的双偏振气象雷达降水粒子分类(Hydrometeor Classification, HC)方法.首先对双偏振气象雷达获取的偏振参量取值进行离散化处理生成离散化标准,并根据离散化标准制作训练数据集合;然后使用训练数据集合对贝叶斯网络进行结构学习学得贝叶斯网络结构,以及参数学习学得与贝叶斯网络结构匹配的条件概率表;最后加入附加信息计算出每种降水粒子类先验概率,与贝叶斯网络结构和条件概率表共同组成贝叶斯网络分类器.训练好的贝叶斯网络分类器根据最大后验概率准则完成对测试数据的降水粒子分类,与模糊逻辑算法对比评价结果.实验证明:该方法能有效区分不同的降水粒子得到准确的降水粒子分类结果.
- 单位