摘要

苎麻(Boehmeiria nivea L)是我国的特产,作为一种传统的纤维作物,一直有着较高的经济地位。开发一种基于高光谱的、新型高效的苎麻品种识别方法,有利于苎麻栽种、种质资源开发利用,为实现苎麻高产优质及麻田精准管理提供关键技术支撑,对提高苎麻产量和品质有重要意义。为了将高光谱技术应用于苎麻品种识别,采集了9个不同基因型苎麻品种,利用地物光谱仪测定苎麻叶片高光谱反射率,共1 458个叶片高光谱数据,利用主成分分析(PCA)对高光谱数据进行降维,探讨PCA最佳主因子个数的确定方法,比较不同主因子个数与不同判别分析(DA)方法——即线性判别分析(LDA)、二次判别分析(QDA)和马氏距离判别分析(MD-DA)组合,在建立基于叶片高光谱的苎麻品种识别模型中效果。对全波段的数据样本进行主成分分析之后,以2~20个主成分作为特征变量,分别建立LDA, QDA和MD-DA三种品种判别模型进行预测,以预测集正确率为评价标准,比较各种组合的效果。结果表明,若以累积贡献率≥85%为标准,选择2个主成分时, LDA, QDA和MD-DA三种判别模型预测集正确率分别为32.92%, 38.48%和33.54%;以特征值≥1为标准,选择11个主成分时,三种判别模型预测集正确率分别为68.72%, 87.04%和83.54%;若以预测集正确率为优先考虑标准,将主成分个数增加至20个时,三种判别模型正确率有较大提高,分别为84.98%, 95.68%和95.27%。由此,得到如下结论:①利用PCA组合DA方法建立基于苎麻叶片高光谱的品种识别模型是可行的,但因子数不同、 DA判别标准不同、组合方法不同效果差异非常大;②主因子个数对识别结果的影响较为明显,适当增加主成分个数可以显著提高模型判别正确率,因此不应局限于PCA特征值和方差累积贡献率的选择方法;③主因子个数相同时,三种判别标准中, QDA效果最好, LDA效果最差;④最佳组合是20个主成分+QDA方法,其数据维度大大降低(由全波段的2 031维降低20维),而预测集正确率为95.68%。