摘要

针对白酒勾兑过程中,现有的白酒勾兑目标规划算法难以确定权系数(优先因子)的缺点,本文提出了利用人工神经网络对目标规划算法进行改进和优化,选择三层前向BP神经网络结构,并通过选取理化指标向量与"优先因子"权系数向量之间合适的样本,对该神经网络结构进行训练,训练完成后得到了一组最优的"优先因子",代入配方模型,求得白酒勾兑最优的配方解。仿真结果表明,基于神经网络的优化算法快速、收敛、可行,能够得到满足多目标的最优配方,得到的理化指标曲线更加接近目标曲线,提高勾兑成功率至98%,降低了勾兑成本6%。因此,该优化算法能够更有效地应用于白酒勾兑工艺中,得到满足多目标的最优配方。

全文