针对葡萄酒的物理化学成分冗余数据,提出了一种基于主成分分析(PCA)和粒子群优化—支持向量机(PSO-SVM)的模型用于葡萄酒的分类.首先,对葡萄酒的物理化学成分进行主成分分析,提取主要影响因素,减少输入维数,再利用粒子群优算法寻找支持向量机的最佳参数,并用支持向量机完成对训练集样本的学习和测试集样本的预测分类.结果表明,该模型与其他模型相比较,具有较高的准确性,有一定的适用价值.