摘要
时变参数系统的仿真优化问题是一个新兴的研究课题,相比传统仿真优化,时变参数系统对实时性的要求高,而对解的精度要求不高。本文提出将该问题转换为一类神经网络预测问题,并从理论上证明了该方法的可行性。首先,线下构建神经网络模型描述输入参数到最优解的映射关系;然后,利用训练好的神经网络模型线上实时预测最优解。考虑到边界样本对最优解拟合曲面的影响,提出构建中心样本和边界样本,分别训练两个神经网络模型。仿真和实例表明,该方法能够随时变参数的变化实时给出满意解,从而为求解时变参数仿真优化问题提供一种新的解决思路。
-
单位电子工程学院; 空军工程大学; 西安电子科技大学