摘要
基于合成孔径雷达(synthetic aperture radar,SAR)在图像目标识别领域中识别精度低的问题,设计一种利用并联卷积神经网络(convolutional neural network, CNN)来提取SAR图像特征的目标识别方法.首先利用改进的ELU激活函数代替常规的ReLU激活函数,建立与二次代价函数相结合的深度学习模型.其次采用均方根支柱(root mean square Prop, RMSProp)与Nesterov动量结合的优化算法执行代价函数参数迭代更新的任务,利用Nesterov引入动量改变梯度,从两方面改进更新方式,有效地提高网络的收敛速度与精度.通过对美国国防研究规划局(DARPA)和空军研究实验室(AFRL)共同推出的MSTAR数据集进行实验,实验表明,该文提出的算法能充分提取出SAR图像中各类目标所蕴含的信息,具有较好的识别性能,是一种有效的目标识别算法.
- 单位