摘要

考虑滚动轴承性能退化状态在时间尺度上的连续性,将时间参数映射到指数函数中,形成更符合性能退化过程的弯曲时间(curved time,CT)参数,同时将C0复杂度和有效值(root mean square,RMS)分别作为复杂性维度和能量维度的退化特征,构建描述滚动轴承性能退化过程的三维特征向量[C0,RMS,CT]。在此基础上,采用GG(Gath-Geva)模糊聚类方法对滚动轴承性能退化状态进行阶段划分,识别不同的退化状态,选用分类系数、平均模糊熵以及序列离散度对聚类效果进行综合评价。采用来自IMS(intelligent maintenance system)的轴承全寿命试验数据进行实例分析,结果表明,提出的三维特征向量既能够反映滚动轴承性能退化趋势,又能体现同一状态在时间尺度上的连续性。