摘要

提出一种结合Beltrami流滤波和域转换递归滤波的高光谱图像分类算法(BFRF-SVM)。分别利用Beltrami流对主成分分析(PCA)降维后的高光谱图像滤波方法和域转换递归滤波方法对全光谱波段进行滤波,两种空间信息进行线性融合后交由支持向量机(SVM)完成分类。实验表明,相比使用光谱信息、高光谱降维、空谱结合的SVM分类方法,以及边缘保持滤波和递归滤波以及形态学滤波特征方法,本文提出的BFRF-SVM方法对高光谱图像的分类精度有较大提高,验证了该方法的有效性。