研究环R{D,C}的一些性质,证明了:1)环R{D,C}是弱拟morphic环当且仅当D是弱拟morphic环且对任意的x∈C,存在y∈C使得Cx=lC(y).Dx=lD(y);2)环R{D,C}是EIFP环当且仅当D和C都是EIFP环;3)环S=R{D,C}是左p.p.-环的充分必要条件是环D和C都是左p.p.-环.