摘要

单图去雨问题是图像处理的一个重要研究方向。为了解决现有方法对雨痕特征提取不够充分的问题,提出一种基于注意力机制的龙格库塔(RK)模块的去雨网络。该模块采用RK模块提高提取图像特征的能力并采用高效通道注意力(ECA)机制加强对雨痕局部表征的关注。通过堆叠多个基于ECA机制的RK模块,可以构建深度去雨模型,较好地特提取雨痕特征;同时采用全局回传机制,利用雨痕的高阶特征以更新其低阶特征,提高雨痕表征的提取质量,逐步提升重建背景图的质量。基于公开数据集Rain100L、Rain100H和RainHeavy的测试结果表明,所提算法能够较好地重构雨天背景图。采用峰值信噪比(PNSR)和结构相似度(SSIM)两个常用指标评估重建背景图像结果,并与去雨算法Semi-Supervised transfer learning for Image rain Removal(SSIR)、Progressive Recurrent Network(PReNet)、Bilateral Recurrent Network(BRN)进行比较,结果显示所提算法的性能最优。