摘要

本发明提出了一种基于深度神经网络与关联分析结合的盾构轴线纠偏方法,用于解决现有技术中存在的纠偏精度较低的技术问题,实现步骤为:构建盾构参数数据包;计算每类盾构轴线偏差的历史纠偏数据;构建基于深度神经网络DNN的轴线偏差参数回归模型;获取每类盾构轴线偏差的历史纠偏数据区间;获取每类盾构轴线偏差的每环纠偏量区间关联的纠偏掘进数据区间;获取盾构机各环所需的纠偏量;获取每环的纠偏掘进参数推荐数值。通过深度神经网络DNN构建盾构轴线偏差参数回归模型,通过关联分析获得与每环纠偏量区间关联的纠偏掘进数据区间,通过反向圆几何计算方法获得每环纠偏量,并通过每环纠偏掘进参数推荐数值实现纠偏,有效提高了纠偏精度。