摘要
本发明提供了一种基于多尺度特征切割与融合的行人重识别方法,具体提供一种基于多尺度深度特征切割与融合的行人重识别网络训练及基于该网络的行人重识别方法,通过多尺度全局描述子提取和局部描述子提取,进行行人重识别。全局描述子的提取是对深度网络不同层的特征图进行平均池化和特征融合,局部描述子的提取是将深度网络最深层特征图水平分割成数块,分别提取各块特征图对应的局部描述子。训练中以最小化平滑交叉熵代价函数以及难样本采样三元组代价函数为目的训练网络参数。采用本发明技术方案,能够解决行人重识别中由于行人姿势变化、摄像头色偏等因素带来的特征不匹配问题,还能消除背景带来的影响,以提高行人重识别的鲁棒性和精度。
-
单位华南理工大学; 淮北幻境智能科技有限公司