摘要

为了准确辨识电力系统次同步振荡模态参数,文章提出一种五点三次平滑和自回归滑动平均(auto-regressive moving average,ARMA)算法相结合的次同步振荡模态辨识方法。首先使用五点三次平滑算法对次同步振荡信号进行去噪预处理,然后对去噪后的信号建立ARMA模型进行次同步振荡模态参数辨识。算例分析结果表明,与希尔伯特黄变换(Hilbert-Huang transform,HHT)算法和ARMA算法相比,该方法去噪性能更好,辨识精度较高。进一步对仿真系统信号进行快速傅里叶变换(fast Fourier transform,FFT),其结果也验证了所提辨识方法的正确性和实用性。