针对基于标签传播的重叠社区发现算法中出现的随机性和不稳定性问题,提出了一种新的基于节点亲密度的标签传播算法.首先,利用网络的局部信息,以模块度增量为依据,对网络中节点进行粗聚类,实现对节点的初步划分;然后,定义节点亲密度函数进行标签的更新和选择.在人工和真实网络上对算法进行验证.结果表明,该算法能有效地提高大规模重叠社区检测的准确性和稳定性,并且具有近乎线性的时间复杂度.