摘要

针对高速铁路和普速铁路的塞钉智能检测问题,提出基于YOLO v5的塞钉检测方法。该方法对训练模型采用He方法初始化,采用微调模式使模型收敛,同时使用dropout正则化方法解决过拟合问题。在训练数据时,对多样式塞钉进行有效分类和样本自动化裁剪,并利用塞钉样本的灰度直方图对数据进行增强;采用非冗余多置信度的方式进行检测,通过先验经验和增加反例来减少误判,并在检测时自动累积塞钉样本。该检测方法已投入现场使用,有效满足了铁路智能巡检的需求。