摘要

针对钢材表面缺陷尺度不一,现有检测算法多尺度特征处理能力较差、精度有待提高的问题,提出了一种面向钢材表面缺陷检测的改进型YOLOv5算法。首先,在骨干网络的特征输出层后添加感受野模块以增强特征的判别性与鲁棒性,可以更好地感知不同尺度的特征信息;然后,利用对齐的特征聚合模块替换传统的特征融合结构,解决了高低分辨率特征图在融合过程中存在的特征错位问题;最后,采用带有高效通道注意力机制的解耦头输出检测结果,注意力机制可以自适应地校准通道响应,解耦头使得分类与回归任务可以独立执行。在NEU-DET数据集上的实验结果显示,所提出方法的平均精度均值为80.51%,相比基准模型提升了4.48%,检测速度为31.96 frame/s。相比其他主流的目标检测算法,在保持一定检测速度的前提下,所提算法具有更高的精度,能够实现高效的钢材表面缺陷检测。