摘要

针对人工肉眼检测聚氯乙烯(PVC)管材表面缺陷效果差、效率低下等问题,设计了一种基于机器视觉的PVC管材表面缺陷检测算法,并将其用于工业生产。该算法主要包含图像预处理和缺陷检测两部分,图像预处理包括边缘遍历、条纹检测和Gamma变换等步骤;缺陷检测主要包括水平与垂直投影、快速区域生长法连通域标记和分块处理等步骤。该算法对Gamma变换以及区域生长法作加速处理,同时能够最大限度地检测出PVC管材表面缺陷并避免误检。实验及工厂实地检测结果表明,该算法检测准确率为97.6%,实时检测速度超过60m/min,缺陷最小检测面积为0.05mm2,而且管材运行中单边抖动不超过5mm时无误报警现象发生,管材在运行速度为45m/min时漏检率为0,因而能满足实际生产需要。