摘要

奶牛身体部位的精准分割广泛应用于奶牛体况评分、姿态检测、行为分析及体尺测量等领域。受奶牛表面污渍和遮挡等因素的影响,现有奶牛部位精准分割方法实用性较差。本研究在YOLO v8n-seg模型的基础上,加入了多尺度融合模块与双向跨尺度加权特征金字塔结构,提出了YOLO v8n-seg-FCA-BiFPN奶牛身体部位分割模型。其中,多尺度融合模块使模型更好地提取小目标几何特征信息,双向跨尺度加权特征金字塔结构实现了更高层次的特征融合。本研究首先在奶牛运动通道处采集了奶牛的侧面图像作为数据集,为保证数据集质量,采用结构相似性算法剔除相似图像,共得到1452幅图像。然后对目标奶牛的前肢、后肢、乳房、尾部、腹部、头部、颈部和躯干8个部位进行标注并送入模型训练。测试结果表明,模型精确率为96.6%,召回率为94.6%,平均精度均值为97.1%,参数量为3.3×106,检测速度为6.2 f/s。各部位精确率在90.3%~98.2%之间,平均精度均值为96.3%。与原始YOLO v8n-seg相比,YOLO v8n-seg-FCA-BiFPN的精确率提高了3.2个百分点,召回率提高了2.6个百分点,平均精度 均值提高了3.1个百分点,改进后的模型在参数量基本保持不变的情况下具有更强的鲁棒性。最后分析了遮挡情况下该模型的检测结果,其中精确率为93.8%,召回率为91.67%,平均精度均值为93.15%。结果表明,YOLO v8n-seg-FCA-BiFPN网络可以准确、快速地实现奶牛身体部位精准分割。