摘要

为实现监测数据的特征值提取,对传感器数据的预处理、时间维及空间维融合方法开展了研究。建立了实时数据融合模型,提出了基于3σ-grubbs检验的异常数据预处理方法,兼顾了异常数据剔除的速度与精度,能很好地消除疏失误差;对单个传感器数据采用分批估计原理进行融合,得到了特征估计值,实现了数据在时间维上的融合;通过对多个传感器的特征估计值采用自适应加权方法进行赋权,实现了数据在空间上的融合,并提出了考虑传感器精度的算法修正。实例计算表明,数据经3σ-grubbs方法处理后方差减小了20%~54%,与传统的算术平均滤波方法相比,分批估计自适应加权融合算法的数据融合方差明显更小,考虑传感器精度后的融合结果更接近高精度传感器值,特征值提取结果更加准确、可靠。

  • 单位
    重庆水利电力职业技术学院; 长安大学; 招商局重庆公路工程检测中心有限公司