摘要
针对电动汽车属性及价格的数据集,采用XGBoost集成学习算法进行电动汽车价格的分类和预测。首先,在Matlab和Python环境中,使用经过预处理的训练数据训练得到XGBoost分类和预测模型。然后,用训练所得XGBoost模型对测试数据进行价格预测,在准确率、召回率、F-score和混淆矩阵等方面对XGBoost算法进行测试,并与支持向量机和神经网络等算法做了对比实验。实验结果证明,三种预测模型预测准确率均在95%以上,XGBoost算法的预测效果最佳。最后,结合各预测模型的原理,对XGBoost预测模型的优缺点进行分析,并提出了模型的改进方向。
-
单位江苏理工学院