摘要

针对滚动轴承振动信号受强噪声干扰,难以提取其微弱故障特征的问题,提出了自适应最大相关峭度解卷积(MCKD)和自适应噪声完全集合经验模态分解(CEEMDAN)的故障特征提取方法。由于MCKD方法的滤波效果受滤波器长度参数的影响,故采用变步长网格搜索法对滤波器长度进行寻优,自适应地实现MCKD降噪。首先以特征能量比(FER)作为目标函数利用变步长网格搜索法寻找最优滤波器长度,通过自适应MCKD算法对振动信号进行降噪;然后采用CEEMDAN方法分解降噪信号,并根据峭度准则选取故障信息丰富的敏感固有模态分量(IMF)进行信号重构;最后利用包络谱对重构信号进行分析,提取故障特征信息。经仿真与实验分析,该方法能够有效地提取出滚动轴承的微弱故障特征信息。

全文