摘要
为考虑个性化因素对热舒适的影响,建立一种基于XGBoost分类算法的热舒适预测模型。利用独热编码的方法对原始数据进行特征参数转换,将转换后的数据作为XGBoost分类算法的输入,经迭代训练后获得最佳的公共建筑中人体热舒适预测模型;利用SHAP值对模型特征参数进行解释,得出影响个性化热舒适的关键因素。结果显示:XGBoost分类算法的热舒适预测模型在受试者工作特征(ROC)曲线下的面积(AUC)和准确率分别为0.95,89%,均优于随机森林、逻辑回归、支持向量机、神经网络等算法模型,表现出较高的预测精度;影响个性化热舒适的关键因素为空气温度、相对湿度、空气风速和体重。
-
单位安徽工业大学; 建筑工程学院